Analysis and Applications
© World Scientific Publishing Company

LEARNING RATES FOR DENSITY LEVEL DETECTION

CLINT SCOVEL, DON HUSH, and INGO STEINWART

Modeling, Algorithms and Informatics Group, CCS-3

Los Alamos National Laboratory

Los Alamos, New Mexico, 87545

United States of America

{jcs,dhush,ingo}@lanl.gov

Received (April 6, 2005) Revised (June 8, 2005)

In this paper we address learning rates for the density level detection (DLD) problem. We begin by proving a "No Free Lunch Theorem" showing that rates cannot be obtained in general. Then we apply a recently established classification framework to obtain rates for DLD support vector machines under mild assumptions on the density.

Keywords: anomaly detection; learning theory; rates; density level detection.

Mathematics Subject Classification 2000: 68Q32, 68T05

1. Introduction

This paper is a follow up to a recent paper [1] where we developed a classification framework for the density level detection (DLD) problem. Here we utilize recent results on classification from [2,3] to provide rate theorems for SVMs for the DLD problem. Let us begin by defining the density level detection problem. Let (X, A)be a measurable space and μ a known distribution on (X, \mathcal{A}) . Furthermore, let Q be an unknown distribution on (X, A) which has an unknown density h with respect to μ , i.e. $dQ = hd\mu$. Given a $\rho > 0$ the set $\{h > \rho\}$ is called the ρ -level set of the density h. As in many other papers (see e.g. [4, 5]) we assume that $\{h = \rho\}$ is a μ -zero set and hence it is also a Q-zero set. Now, the goal of the DLD problem is to find an estimate of the ρ -level set of h. To this end we need some information which in our case is given to us by a training set $T=(x_1,\ldots,x_n)\in X^n$. We will assume in the following that T is i.i.d. drawn from Q. With the help of T a DLD algorithm constructs a function $f_T: X \to \mathbb{R}$ for which the set $\{f_T > 0\}$ is an estimate of the ρ level set $\{h > \rho\}$. Since in general $\{f_T > 0\}$ does not exactly coincide with $\{h > \rho\}$ we need a performance measure which describes how well $\{f_T > 0\}$ approximates the set $\{h > \rho\}$. Probably the best known performance measure (see e.g. [5, 6] and the references therein) for measurable functions $f: X \to \mathbb{R}$ is

$$\mathcal{S}_{\mu,h,\rho}(f) := \mu\Big(\{f>0\} \triangle \{h>\rho\}\Big),\,$$

where \triangle denotes the symmetric difference. Then the goal of the DLD problem is to find f_T such that $\mathcal{S}_{\mu,h,\rho}(f_T)$ is close to zero.

The DLD problem is a well known problem in statistics and has important applications in anomaly detection (see e.g. [1,7] and the references therein) and many other areas. For example, it can be used for the problem of cluster analysis as described in [8,9] and for testing of multimodality (see e.g. [10,11]). Some other applications including estimation of non-linear functionals of densities, density estimation, regression analysis and spectral analysis are briefly described in [4].

In the statistical literature the most common approach for the DLD problem is the excess mass approach (see e.g. [12,10,4,5], and the references therein). Unfortunately this approach is based on empirical risk minimization and hence in general we cannot expect this approach to be computationally feasible (see however [12] for an algorithm with $\mathcal{O}(n^2)$ space and $\mathcal{O}(n^3)$ time requirements for a very special class of distributions on \mathbb{R}^2). To overcome this problem a method has been proposed in [1,7] that utilizes a classification performance risk for which quantitative comparisons with $\mathcal{S}_{\mu,h,\rho}$ can be achieved (see Theorem 3.1). This classification approach suggests efficient algorithms which will work for large classes of distributional assumptions. Indeed, in [1] an SVM is specified and universal consistency with respect to $\mathcal{S}_{\mu,h,\rho}$ proved.

In this paper we continue our investigation into the DLD problem by proving a "No Free Lunch Theorem". In addition, we use modifications of recent results of [2,3] applied to this classification framework to provide a learning rate theorem for the DLD problem in terms of a modification of the geometric noise exponent $\alpha \in (0, \infty]$ introduced in [2] and the noise exponent $q \in [0, \infty]$ introduced by Polonik [4]. That is, we show that the SVMs introduced in [1] obtain learning rates for $\mathcal{S}_{\mu,h,\rho}$ essentially of the form

$$n^{-\frac{q\alpha}{(1+q)(2\alpha+1)}}$$

if $\alpha \leq \frac{q+2}{2q}$ and

$$n^{-\frac{2q\alpha}{2\alpha(q+2)+3q+\alpha}}$$

if $\alpha > \frac{q+2}{2q}$. A simple version of these rate results has already been announced in [7].

2. Definitions and Results

In this section we define terms and state our results. We begin by recalling the definition of noise exponent for DLD from [1]:

Definition 2.1. Let μ be a distribution on X and $h: X \to [0, \infty)$ be a measurable function with $\int h d\mu = 1$, i.e. h is a density with respect to μ . For $\rho > 0$ and

 $0 \le q \le \infty$ we say that h has ρ -exponent q if there exists a constant C > 0 such that for all sufficiently small t > 0 we have

$$\mu(\{|h-\rho| \le t\}) \le Ct^q. \tag{2.1}$$

Definition 2.1 was first considered in [4, p. 864] where examples of distributions with ρ -exponent 1 for all ρ and examples with ρ -exponent $\frac{1}{2}$ for all ρ were described. In [1] this condition was shown to be closely related to a concept in binary classification called the Tsybakov noise exponent (see e.g. [5]).

We can now proceed to a No Free Lunch Theorem in the spirit of the well known result [13, Theorem 7.2] of Devroye et al. Note that here there is a conceptual difference since the density level ρ is often considered a tuning parameter and therefore it is desirable that a No Free Lunch Theorem for DLD guarantees the existence of densities for which detecting all of their density levels is hard. Such a result is provided by the following theorem proven in Section 3:

Theorem 2.1. Let $\frac{1}{16} \geq a_1 \geq a_2 \geq \dots$ be a strictly positive, decreasing sequence converging to 0 and μ be a measure on X which has no atoms. Then for every DLD algorithm $\mathcal{D}: T \mapsto f_T$ there exists a measure Q with density $h: X \to [0,3]$ which has ρ -exponent ∞ for all $0 < \rho < ||h||_{\infty}$ such that

$$\mathbb{E}_{T \sim Q^n} \mathcal{S}_{\mu, h, \rho}(f_T) \ge \frac{3}{10} a_n$$

for all n and all $0 < \rho < ||h||_{\infty}$.

Theorem 2.1 shows that learning rates are impossible without some restrictions on the distributions involved. To define such restrictions we consider a modification of the geometric noise exponent introduced in [2] for the classification problem. To that end we define

$$\tau_x := \begin{cases} d(x, \{h > \rho\}) & \text{if } x \in \{h < \rho\} \\ d(x, \{h < \rho\}) & \text{if } x \in \{h \ge \rho\} \end{cases}$$

where d is the usual distance from a point to a set in the Euclidian space \mathbb{R}^d . We then define the *geometric* noise exponent as follows.

Definition 2.2. Let μ be a distribution on $X \subset \mathbb{R}^d$ and $h: X \to [0, \infty)$ be a measurable function with $\int h d\mu = 1$, i.e. h is a density with respect to μ . For $\rho > 0$ and $\alpha \in (0, \infty]$ we say that h has geometric ρ -exponent α if

$$\int_X \tau_x^{-\alpha d} |h - \rho| d\mu < \infty.$$

The exponent α describes the concentration of the measure $|h-\rho|d\mu$ near the set $\{h = \rho\}$ and does not imply any smoothness of the function h or the set $\{h = \rho\}$. However, one can show as in [2, Theorem 2.6] that if h has noise exponent q and h satisfies the envelope condition

$$|h(x) - \rho| \le c_{\gamma} \tau_x^{\gamma}, \quad x \in X$$

for some constants γ and c_{γ} , then h has geometric ρ -exponent $\alpha = \frac{q+1}{d}\gamma$ if $q \geq 1$ and geometric ρ -exponent α for all $\alpha < \frac{q+1}{d}\gamma$ otherwise.

We now introduce the learning algorithms we will investigate. To this end let $k: X \times X \to \mathbb{R}$ be a positive definite kernel with reproducing kernel Hilbert space (RKHS) H. Let $l: Y \times \mathbb{R} \to [0, \infty)$ be the hinge loss function, i.e. $l(y, t) := \max\{0, 1 - yt\}, \ y \in Y, \ t \in \mathbb{R}$. Then for training sets $T^+ = (x_1, \dots, x_{n_+}) \in X^{n_+}$ and $T^- = (x_1, \dots, x_{n_-}) \in X^{n_-}$, a regularization parameter $\lambda > 0$, and $\rho > 0$ we define $f_{T^+, T^-, \lambda}$ to be a minimizer in

$$\arg\min_{f\in H} \lambda \|f\|_{H}^{2} + \frac{1}{(1+\rho)n_{+}} \sum_{i=1}^{n_{+}} l(1, f(x_{i})) + \frac{\rho}{(1+\rho)n_{-}} \sum_{i=1}^{n_{-}} l(-1, f(x_{i})), \quad (2.2)$$

and $(\tilde{f}_{T^+,T^-,\lambda},\tilde{b}_{T^+,T^-,\lambda})$ to be a mininizer in

$$\arg \min_{\substack{f \in H \\ b \in \mathbb{R}}} \lambda \|f\|_{H}^{2} + \frac{1}{(1+\rho)n_{+}} \sum_{i=1}^{n_{+}} l(1, f(x_{i}) + b) + \frac{\rho}{(1+\rho)n_{-}} \sum_{j=1}^{n_{-}} l(-1, f(x_{j}) + b).$$
(2.3)

The decision function of the SVM without offset is $f_{T^+,T^-,\lambda}: X \to \mathbb{R}$ and analogously, the SVM with offset has the decision function $\tilde{f}_{T^+,T^-,\lambda}+\tilde{b}_{T^+,T^-,\lambda}: X \to \mathbb{R}$.

We can now state our main result which considers the sample plan where independently $n_+ = nm_+$ samples are taken *i.i.d.* from Q and $n_- = nm_-$ samples are taken *i.i.d.* from μ .

Theorem 2.2. Let X be the closed unit ball of the Euclidian space \mathbb{R}^d , and μ and Q be distributions on X such that $dQ = hd\mu$ for some non-negative function h. For fixed $\rho > 0$ assume that the density h has both ρ -exponent $q \in [0, \infty]$ and geometric ρ -exponent $\alpha \in (0, \infty)$. We define

$$\lambda_n := \begin{cases} n^{-\frac{\alpha+1}{2\alpha+1}} & \text{if } \alpha \leq \frac{q+2}{2q} \\ n^{-\frac{2(\alpha+1)(q+1)}{2\alpha(q+2)+3q+4}} & \text{otherwise} \,, \end{cases}$$

and $\sigma_n := \lambda_n^{-\frac{1}{(\alpha+1)d}}$ in both cases. Then for all $\varepsilon > 0$ there exists a constant C > 0 such that for all $x \ge 1$, $n \ge 1$, $m_+ \ge 1$ and $m_- \ge 1$, the SVM defined in line (2.2) using λ_n and Gaussian RBF kernel $k_{\sigma_n}(x,x') = \exp(-\sigma_n^2 ||x-x'||_2^2), x, x' \in X$, satisfies

$$(Q^{nm_+} \otimes \mu^{nm_-})^* \Big((T^+, T^-) : \mathcal{S}_P(f_{T^+, T^-, \lambda_n}) \le C x^2 n^{-\frac{q\alpha}{(1+q)(2\alpha+1)} + \varepsilon} \Big) \ge 1 - e^{-x}$$
if $\alpha \le \frac{q+2}{2q}$ and

$$(Q^{nm_+} \otimes \mu^{nm_-})^* \Big((T^+, T^-) : \mathcal{S}_P(f_{T^+, T^-, \lambda_n}) \le C x^2 n^{-\frac{2q\alpha}{2\alpha(q+2)+3q+4}+\varepsilon} \Big) \ge 1 - e^{-x}$$

otherwise. If $\alpha = \infty$ the latter concentration inequality holds if $\sigma_n = \sigma$ is a constant with $\sigma > 2\sqrt{d}$. Furthermore, all results hold for the SVM with offset defined in line (2.3) if q > 0. Finally, the notation $(Q^{nm_+} \otimes \mu^{nm_-})^*$ denotes the outer probability of $Q^{nm_+} \otimes \mu^{nm_-}$ and is used to avoid measurability considerations.

Remark 2.1. In the proof of Theorem 2.2 we prove rates for a classification risk \mathcal{R}_P (see line (3.2)) which, although it may appear merely as a technical device, can be construed as a performance measure for density level detection with as much validity as S_P . See [1] for a discussion.

Remark 2.2. (SVMs using Sobolev spaces) Theorem 2.2 is modeled on [2, Theorem 2.8] and chooses the Gaussian RBF parameter σ to depend on n and both noise exponents. However [3, Example 1] shows how results similar to [2, Theorem 2.8] can be obtained for classification with a fixed choice of Sobolev space for the RKHS. Using the same techniques we use to prove Theorem 2.2 we obtain the analogue of [3, Theorem 1] and therefore the analogue of [3, Example 1] for density level detection. The latter can be stated as follows: Let X be the unit ball in \mathbb{R}^d and choose as a RKHS the Sobolev space $W^m(X)$ with m > d/2. Let μ and Q be distributions on X such that $dQ = hd\mu$. For fixed $\rho > 0$ assume that the density h has both ρ -exponent $q \in [0, \infty]$ and geometric ρ -exponent $\alpha \in (0, \infty)$. Then with the appropriate choice of regularization parameter we obtain optimal rates essentially of the form

$$n^{-\frac{4\alpha dmq}{(2mq+dq+4m)(2\alpha d+d+2m)}}$$
.

3. Proofs

In this section we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. The proof uses ideas from Devroye et al. [13, Theorem 7.2]. Let us first assume that $a_1 \leq \frac{1}{16}$ and define $\hat{a}_n := 2a_n$. If (\hat{p}_n) denotes the sequence of [13, Lem. 7.1] with respect to (\hat{a}_n) we write $p_n := \frac{\hat{p}_n}{2}$. Now recall that Lyapunov's theorem states that the image of every atom-free finite measure is a closed interval. Therefore, we can inductively find a partition $A_{-1}, A_0, A_1, A_2, \ldots$ of X with $\mu(A_{-1}) = \frac{1}{6}$, $\mu(A_0) = \frac{1}{3}$, and $\mu(A_n) = p_n$ for $n \geq 1$. Furthermore, let $\hat{\nu}$ be the measure on $\{0,1\}$ which is defined by $\hat{\nu}(\{0\}) = \frac{1}{2}$. We will use the product measure $\nu := \bigotimes_{1}^{\infty} \hat{\nu}$ on $\Omega := \{0,1\}^{\infty}$ for constructing "random densities". To this end we write $c_{\omega} := \frac{1}{3} + \sum_{i=1}^{\infty} \omega_{i} p_{i}$ for all $\omega = (\omega_{i}) \in \Omega$. Now, given an $\omega \in \Omega$ we define a density $h_{\omega} : X \to [0,3]$ by $h_{\omega} :\equiv 0$ on A_{-1} , $h_{\omega} :\equiv \frac{1}{c_{\omega}}$ on A_{0} , and $h_{\omega}(n) :\equiv \frac{\omega_{n}}{c_{\omega}}$ on A_{n} for $n \geq 1$. It follows that $||h||_{\infty} = \frac{1}{c_{\omega}}$. Consequently, the relation $s = \frac{1}{1+\rho}$ implies we only need to consider the s interval $(\frac{c_{\omega}}{c_{\omega}+1}, 1)$. Consider the shorthand notation $S_{\omega,s} := S_{\mu,h_{\omega},\rho}$ where $\rho = \frac{1-s}{s}$ and let us fix an $s \in (\frac{c_{\omega}}{c_{\omega}+1},1)$ with the corresponding $\rho = \frac{1-s}{s}$. Since the definition of h_{ω} implies that $\{h_{\omega} > \rho'\} = \{h_{\omega} > \rho\}$ for all $\rho' \in (0, \frac{1}{c_{\omega}})$ and all $\omega \in \Omega$, denoting $s' = \frac{1}{1+\rho'}$ we obtain for any f that

$$\mathcal{S}_{\omega,s'}(f) = \mu\Big(\{f>0\} \ \triangle \ \{h_\omega>\rho'\}\Big) = \mu\Big(\{f>0\} \ \triangle \ \{h_\omega>\rho\}\Big) = \mathcal{S}_{\omega,s}(f).$$

Consequently any ω found to provide the inequality of the theorem for our fixed $s \in (\frac{c_{\omega}}{c_{\omega}+1}, 1)$ also works for any other value $s' \in (\frac{c_{\omega}}{c_{\omega}+1}, 1)$.

Now, for $T = (x_i) \in X^{\infty}$ we write $T_n := (x_1, \dots, x_n)$ and obtain

$$\int_{\Omega} \inf_{n\geq 1} \frac{1}{a_n} \int_{X^n} \mathcal{S}_{\omega,s}(f_{T_n}) Q_{\omega}^n(dT) \nu(d\omega)
\geq \int_{\Omega} \int_{X^{\infty}} \inf_{n\geq 1} \frac{\mathcal{S}_{\omega,s}(f_{T_n})}{a_n} Q_{\omega}^{\infty}(dT) \nu(d\omega)
\geq \int_{\Omega} \int_{X^{\infty}} \mathbf{1}_{\bigcap_{n=1}^{\infty} \{\mathcal{S}_{\omega,s}(f_{T_n}) \geq a_n\}} Q_{\omega}^{\infty}(dT) \nu(d\omega)
\geq 1 - \sum_{n=1}^{\infty} \int_{\Omega} \int_{X^{\infty}} \mathbf{1}_{\{\mathcal{S}_{\omega,s}(f_{T_n}) < a_n\}} Q_{\omega}^{\infty}(dT) \nu(d\omega).$$

Furthermore, for $\omega \in \Omega$, $i \geq 1$ and a decision function $f: X \to Y$ we write

$$E_{\omega,i}(f) := A_i \cap \Big(\{f > 0\} \triangle \{h_\omega > \rho\} \Big).$$

Now for $i \geq 1$ we define $\hat{f}_{T_n}(i) := \arg \max_y \mu(\{f_{T_n} = y\} \cap A_i)$, where in the presence of a tie we set $\hat{f}_{T_n}(i) := 1$. This definition implies

$$\mathbf{1}_{\{\mu(E_{\omega,i}(f_{T_n})) \geq p_i/2\}} \; \geq \; \mathbf{1}_{\left\{\hat{f}_{T_n}(i) \neq 2\omega_i - 1\right\}}\,,$$

and since $\mu(E_{\omega,i}(f)) \geq \frac{p_i}{2} \mathbf{1}_{\{\mu(E_{\omega,i}(f)) \geq p_i/2\}}$ we obtain

$$S_{\omega,s}(f_{T_n}) = \mu\Big(\bigcup_{i=-1}^{\infty} E_{\omega,i}(f_{T_n})\Big) \geq \sum_{i=1}^{\infty} \mu\Big(E_{\omega,i}(f_{T_n})\Big) \geq \frac{1}{2} \sum_{i=1}^{\infty} \mathbf{1}_{\left\{\hat{f}_{T_n}(i) \neq 2\omega_i - 1\right\}} p_i.$$

Since this shows

$$\left\{ (\omega,T): \mathcal{S}_{\omega,s}(f_{T_n}) < a_n \right\} \subset \left\{ (\omega,T): \sum_{i=1}^{\infty} \mathbf{1}_{\left\{ \hat{f}_{T_n}(i) \neq 2\omega_i - 1 \right\}} p_i < 2a_n \right\}$$

we obtain

$$\int_{\Omega} \int_{X^{\infty}} \mathbf{1}_{\left\{S_{\omega,s}(f_{T_{n}}) < a_{n}\right\}} Q_{\omega}^{\infty}(dT) \nu(d\omega)
\leq \int_{\Omega} \int_{X^{\infty}} \mathbf{1}_{\left\{\sum_{i=1}^{\infty} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} Q_{\omega}^{\infty}(dT) \nu(d\omega)
= \int_{\Omega} \int_{X^{n}} \mathbf{1}_{\left\{\sum_{i=1}^{\infty} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} Q_{\omega}^{n}(dT) \nu(d\omega)
= \int_{\Omega} \int_{X^{n}} \mathbf{1}_{\left\{\sum_{i=1}^{\infty} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} \prod_{j=1}^{n} h_{\omega}(x_{j}) \mu^{n}(dT) \nu(d\omega)
\leq 3^{n} \int_{\Omega} \int_{X^{n}} \mathbf{1}_{\left\{\sum_{i=1}^{\infty} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} \mu^{n}(dT) \nu(d\omega)
\leq 3^{n} \int_{X^{n}} \int_{\Omega} \mathbf{1}_{\left\{\sum_{i \notin T} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} \nu(d\omega) \mu^{n}(dT) ,$$

where $i \notin T = (x_1, \ldots, x_n)$ means $\{i : A_i \cap \{x_1, \ldots, x_n\} = \emptyset\}$. Now, for fixed $T = (x_1, \ldots, x_n) \in X^n$ we denote by Ω_T the product of the x_i th components of Ω , $i = 1, \ldots, n$. Analogously, $\Omega_{\neg T}$ denotes the product of the remaining components

of Ω . Obviously we have $\Omega = \Omega_{\neg T} \times \Omega_T$. Analogously, the measure ν can be decomposed into $\nu = \nu_{\neg T} \otimes \nu_T$. With this notation we obtain

$$\begin{split} & \int_{\Omega} \mathbf{1}_{\left\{\sum_{i \not\in T} \mathbf{1}_{\{\hat{f}_{T_n}(i) \neq 2\omega_i - 1\}} p_i < 2a_n\right\}} \nu(d\omega) \\ &= \int_{\Omega_T} \int_{\Omega_{\neg T}} \mathbf{1}_{\left\{\sum_{i \not\in T} \mathbf{1}_{\{\hat{f}_{T_n}(i) \neq 2\omega_i - 1\}} p_i < 2a_n\right\}} \nu_{\neg T}(d\omega_{\neg T}) \nu_T(d\omega_T) \,. \end{split}$$

Now, we observe

$$\begin{split} \int_{\Omega_{\neg T}} \mathbf{1}_{\left\{\sum_{i \not\in T} \mathbf{1}_{\left\{\hat{I}_{T_{n}}(i) \neq 2\omega_{i}-1\right\}} p_{i} < 2a_{n}\right\}} \nu_{\neg T}(d\omega_{\neg T}) &= \int_{\Omega_{\neg T}} \mathbf{1}_{\left\{\sum_{i \not\in T} \mathbf{1}_{\left\{\omega_{i}=1\right\}} p_{i} < 2a_{n}\right\}} \nu_{\neg T}(d\omega_{\neg T}) \\ &= \int_{\Omega_{\neg T}} \mathbf{1}_{\left\{\sum_{i \not\in T} \omega_{i} p_{i} < 2a_{n}\right\}} \nu_{\neg T}(d\omega_{\neg T}) \,, \end{split}$$

and hence we get

$$\begin{split} \int_{\Omega} \mathbf{1}_{\left\{\sum_{i \not\in T} \mathbf{1}_{\left\{\hat{f}_{T_{n}}(i) \neq 2\omega_{i} - 1\right\}} p_{i} < 2a_{n}\right\}} \nu(d\omega) &= \int_{\Omega} \mathbf{1}_{\left\{\sum_{i \not\in T} \omega_{i} p_{i} < 2a_{n}\right\}} \nu(d\omega) \\ &\leq \int_{\Omega} \mathbf{1}_{\left\{\sum_{i = n + 1}^{\infty} \omega_{i} p_{i} < 2a_{n}\right\}} \nu(d\omega) \\ &= \int_{\Omega} \mathbf{1}_{\left\{\sum_{i = n + 1}^{\infty} \omega_{i} \hat{p}_{i} < 2\hat{a}_{n}\right\}} \nu(d\omega) \\ &< e^{-2n} \,. \end{split}$$

where the last inequality was established in [13, p. 117]. Hence we find

$$\int_{\Omega} \inf_{n \geq 1} \frac{1}{a_n} \int_{X^n} \mathcal{S}_{\omega,s}(f_{T_n}) Q_{\omega}^n(dT) \nu(d\omega)
\geq 1 - \sum_{n=1}^{\infty} 3^n \int_{X^n} \int_{\Omega} \mathbf{1}_{\left\{\sum_{i \notin T} \mathbf{1}_{\left\{\hat{f}_{T_n}(i) \neq 2\omega_i - 1\right\}} p_i < 2a_n\right\}} \nu(d\omega) \mu^n(dT)
\geq 1 - \sum_{n=1}^{\infty} 3^n e^{-2n}
= \frac{e^2 - 6}{e^2 - 3}
\geq \frac{3}{10}.$$

Therefore, there exists an $\omega \in \Omega$ with

$$\mathbb{E}_{T_n \sim Q^n} \mathcal{S}_{\omega,s}(f_{T_n}) \ge \frac{3a_n}{10}$$

for all $n \geq 1$.

We now proceed with preparations towards the proof of Theorem 2.2. We begin by recalling the classification framework for DLD introduced in [1]. We have the following definition.

Definition 3.1. Let μ and Q be probability measures on X and $s \in (0,1)$. Then the probability measure $Q \ominus_s \mu$ on $X \times Y$ is defined by

$$Q \ominus_s \mu(A) := s \mathbb{E}_{x \sim Q} \mathbf{1}_A(x, 1) + (1 - s) \mathbb{E}_{x \sim \mu} \mathbf{1}_A(x, -1)$$

for all measurable subsets $A \subset X \times Y$. Here we used the shorthand $\mathbf{1}_A(x,y) := \mathbf{1}_A((x,y))$ where $\mathbf{1}_A$ is the indicator function of the set A.

Roughly speaking, the distribution $Q \ominus_s \mu$ measures the "1-slice" of $A \subset X \times Y$ by sQ and the "-1-slice" by $(1-s)\mu$. Moreover, the measure $P := Q \ominus_s \mu$ can obviously be associated with a binary classification problem in which positive samples are drawn from sQ and negative samples are drawn from $(1-s)\mu$. Inspired by this interpretation let us recall that the binary classification risk for a measurable function $f: X \to \mathbb{R}$ and a distribution P on $X \times Y$ is defined by

$$\mathcal{R}_P(f) = P(\{(x,y) : signf(x) \neq y\}), \qquad (3.2)$$

where we define signt := 1 if t > 0 and signt = -1 otherwise. Furthermore, the Bayes $risk \mathcal{R}_P^*$ of P is the smallest possible classification risk with respect to P, i.e.

$$\mathcal{R}_P^* := \inf \Big\{ \mathcal{R}_P(f) \, \big| \, f : X \to \mathbb{R} \text{ measurable} \Big\} \,.$$

It is shown in [1] that every distribution $P := Q \ominus_s \mu$ with $dQ := hd\mu$ and $s \in (0,1)$ determines a triple (μ, h, ρ) with $\rho := (1-s)/s$ and vice-versa. We therefore use the shorthand $\mathcal{S}_P(f) := \mathcal{S}_{\mu,h,\rho}(f)$.

In [1] it was shown that $S_P(f_n) \to 0$ if and only if $\mathcal{R}_P(f_n) \to \mathcal{R}_P^*$. Therefore a classification algorithm which makes \mathcal{R}_P close to \mathcal{R}_P^* also makes S_P close to zero. Furthermore the following theorem, providing a more quantitative relationship in terms of the ρ -exponent q, was also established.

Theorem 3.1. Let $\rho > 0$ and μ and Q be probability measures on X such that Q has a density h with respect to μ . For $s := \frac{1}{1+\rho}$ we write $P := Q \ominus_s \mu$. Then the following statements hold:

(1) If h is bounded then there exists a constant c > 0 such that for all measurable $f: X \to \mathbb{R}$ we have

$$\mathcal{R}_P(f) - \mathcal{R}_P^* \leq c \, \mathcal{S}_P(f) \,.$$

(2) If h has ρ -exponent $q \in (0, \infty]$ then there exists a constant c > 0 such that for all measurable $f: X \to \mathbb{R}$ we have

$$S_P(f) \leq c \left(\mathcal{R}_P(f) - \mathcal{R}_P^* \right)^{\frac{q}{1+q}}.$$

Theorem 3.1 justifies using learning algorithms designed to minimize the risk function \mathcal{R}_P for the DLD problem. Therefore consider a class of functions \mathcal{F} on X, a loss function $L: \mathcal{F} \times X \times \{-1,1\} \to [0,\infty)$ and denote $L \circ f(x,y) = L(f,x,y)$. Let $P:=Q \ominus_s \mu$ where $s:=\frac{1}{1+\rho}$. In general, we abuse notation by denoting the empirical distribution corresponding to a sample T with the same symbol T. This

identification implies that the symbol \mathbb{E}_T means the sample average over T. Define an induced loss function

$$L \odot f(x) := \frac{1}{\rho + 1} L(f, x, 1) + \frac{\rho}{\rho + 1} \mathbb{E}_{x' \sim \mu} L(f, x', -1), \quad x \in X.$$

For a training set $T=(x_1,\ldots,x_{n_+})\in X^{n_+}$ we define the empirical approximation

$$\mathcal{R}_{L,T}(f) := \mathbb{E}_T L \odot f = \frac{1}{n_+(\rho+1)} \sum_{j=1}^{n_+} L(f, x_j, 1) + \frac{\rho}{\rho+1} \mathbb{E}_{x' \sim \mu} L(f, x', -1).$$

Then since

$$\mathcal{R}_{L,P}(f) := \mathbb{E}_P L \circ f = \mathbb{E}_O L \odot f,$$

if we can find

$$f_T \in \arg\min \mathcal{R}_{L,T}(f),$$

then the results from [2] could be applied to obtain learning rates. However this approach suffers from the fact that we need to know the functional dependence of $\mathbb{E}_{x'\sim\mu}L(f,x',-1)$ on $f\in\mathcal{F}$. Consequently, in general there appear to be no efficient algorithms for finding f_T . In [2] it was proposed to replace the term $\mathbb{E}_{x'\sim\mu}L(f,x',-1)$ with the empirical approximation $\frac{1}{n_-}\sum_{j=1}^{n_-}L(f,x'_j,-1)$ determined by taking n_- i.i.d. samples $T^-=(x'_1,...,x'_{n_-})$ from μ . With the appropriate choice of L there exist efficient algorithms but now we are not minimizing a sample average but the convex combination of a sample average over T with a sample average over T^- and so the performance analysis of [2] has to be reconsidered. Instead of analyzing this case in its full generality, here we only consider the case when $n_+=nm_+$ and $n_-=nm_-$ have a common factor n and derive rates in terms of n. We first explain our approach when $n_+=n_-$. We define an induced loss function

$$L \odot f(x^+, x^-) := \frac{1}{\rho + 1} L(f, x^+, 1) + \frac{\rho}{\rho + 1} L(f, x^-, -1), \quad (x^+, x^-) \in X \times X.$$

It follows that

$$\mathbb{E}_{Q \otimes \mu} L \odot f = \frac{1}{\rho + 1} \mathbb{E}_{Q} L(f, \cdot, 1) + \frac{\rho}{\rho + 1} \mathbb{E}_{\mu} L(f, \cdot, -1) = \mathbb{E}_{P} L(f, \cdot, \cdot)$$

and

$$\sum_{j=1}^n L \odot f(x_j^+, x_j^-) = \frac{1}{\rho+1} \sum_{j=1}^n L(f, x_j^+, 1) + \frac{\rho}{\rho+1} \sum_{j=1}^n L(f, x_j^-, -1)$$

so that the two independent sample averages over X become one sample average over $X \times X$.

Let us now proceed to the more general case $n_+ = nm_+$ and $n_- = nm_-$. Let $L: \mathcal{F} \times X \times \{-1,1\} \to \mathbb{R}$ be a loss function, and denote $L \circ f(x,y) = L(f,x,y)$, $L_+ \circ f(x) = L(f,x,1)$, and $L_- \circ f(x) = L(f,x,-1)$. Let m_+ and m_- be two

positive integers and consider the nm_+ -sample $T^+ \in X^{nm_+}$ sampled from Q and the nm_- -sample $T^- \in X^{nm_-}$ sampled from μ . Consider the obvious bijections

$$X^{nm_+} \rightarrow (X^{m_+})^n$$

$$X^{nm_-} \rightarrow (X^{m_-})^n$$

decomposing T^+ into $T^+ = (Z_1^+, ..., Z_n^+)$ and T^- into $T^- = (Z_1^-, ..., Z_n^-)$ with $Z_j^+ \in X^{m_+}, j = 1, ..., n$ and $Z_j^- \in X^{m_-}, j = 1, ..., n$. They induce a bijection

$$X^{nm_+} \times X^{nm_-} \to \left(X^{m_+} \times X^{m_-}\right)^n.$$

which maps the $nm_+ + nm_-$ -sample (T^+, T^-) with points in X to the n-sample

$$\mathsf{T} = ((Z_1^+, Z_1^-), ..., (Z_n^+, Z_n^-))$$

with points in $X^{m_+} \times X^{m_-}$. Recall that if we consider a point Z^+ in X^{m_+} as an m_+ -sample with points in X we write the sample average as \mathbb{E}_{Z^+} and do likewise for Z^- in X^{m_-} . In addition \mathbb{E}_{T} denotes the sample average over the n-sample T . We now introduce the induced loss function L on $X^{m_+} \times X^{m_-}$ by

$$L \odot f(Z^+, Z^-) := \mathbb{E}_{(Z^+ \ominus_s Z^-)} L \circ f = \frac{1}{\rho + 1} \mathbb{E}_{Z^+} (L_+ \circ f) + \frac{\rho}{\rho + 1} \mathbb{E}_{Z^-} (L_- \circ f). (3.3)$$

The following lemma establishes useful relations for the expected values of sample averages.

Lemma 3.1. Consider $g: X \times \{-1,1\} \to \mathbb{R}^+$. For $(T^+,T^-) \in X^{nm_+} \times X^{nm_-}$ decompose T^+ into $T^+ = (Z_1^+,...,Z_n^+)$ and T^- into $T^- = (Z_1^-,...,Z_n^-)$ and let $\mathsf{T} = ((Z_1^+,Z_1^-),...,(Z_n^+,Z_n^-))$ denote the induced n-sample on $X^{m_+} \times X^{m_-}$. Consider the induced function

$$\dot{g}(Z^+, Z^-) := \mathbb{E}_{(Z^+ \ominus_s Z^-)} g$$

defined on $X^{m_+} \times X^{m_-}$. Then

$$\mathbb{E}_{\mathsf{T}} \acute{g} = \mathbb{E}_{(T^+ \ominus_s T^-)} g,$$

$$\mathbb{E}_{(Q^m+\otimes \mu^m-)} \acute{g} = \mathbb{E}_{Q\ominus_s \mu} g,$$

$$\mathbb{E}_{(Q^{m_+}\otimes \mu^{m_-})} \acute{g}^2 \leq \mathbb{E}_{Q\ominus_s \, \mu} g^2.$$

Proof. Denote $g_+ := g(\cdot, 1)$ and $g_- := g(\cdot, -1)$. We have

$$\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{Z_{j}^{+}} g_{+} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{m_{+}} \sum_{l=1}^{m_{+}} g_{+}(Z_{j,l}^{+}) = \frac{1}{nm_{+}} \sum_{j=1,l=1}^{n,m_{+}} g_{+}(Z_{j,l}^{+})$$

and since $Z_{j,l}^+$, $j=1,n,\ l=1,m_+$ are the components of the nm_+ -sample T^+ the righthand side is equal to $\mathbb{E}_{T^+}g_+$. Therefore

$$\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{Z_{j}^{+}} g_{+} = \mathbb{E}_{T^{+}} g_{+} \quad \text{and} \quad \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{Z_{j}^{-}} g_{-} = \mathbb{E}_{T^{-}} g_{-}$$
(3.4)

and so

$$\mathbb{E}_{\mathsf{T}} \dot{g} = \frac{1}{n} \sum_{j=1}^{n} \dot{g}(Z_{j}^{+}, Z_{j}^{-})$$

$$= \frac{1}{n} \sum_{j=1}^{n} \left(\frac{1}{\rho + 1} \mathbb{E}_{Z_{j}^{+}} g_{+} + \frac{\rho}{\rho + 1} \mathbb{E}_{Z_{j}^{-}} g_{-} \right)$$

$$= \frac{1}{\rho + 1} \mathbb{E}_{T^{+}} g_{+} + \frac{\rho}{\rho + 1} \mathbb{E}_{T^{-}} g_{-}$$

$$= \mathbb{E}_{(T^{+} \ominus_{T}, T^{-})} g$$

establishing the first assertion. For the second assertion observe that

$$\mathbb{E}_{(Q^{m_{+}} \otimes \mu^{m_{-}})} \dot{g} = \mathbb{E}_{(Z^{+}, Z^{-}) \sim Q^{m_{+}} \otimes \mu^{m_{-}}} \left(\frac{1}{\rho + 1} \mathbb{E}_{Z^{+}} g_{+} + \frac{\rho}{\rho + 1} \mathbb{E}_{Z^{-}} g_{-} \right)$$

$$= \frac{1}{\rho + 1} \mathbb{E}_{(Z^{+} \sim Q^{m_{+}})} \mathbb{E}_{Z^{+}} g_{+} + \frac{\rho}{\rho + 1} \mathbb{E}_{(Z^{-} \sim \mu^{m_{-}})} \mathbb{E}_{Z^{-}} g_{-}.$$

Since g is non-negative both g_+ and g_- are non-negative and Tonelli's theorem implies that $\mathbb{E}_{(Z^+ \sim Q^{m_+})} \mathbb{E}_{Z^+} g_+ = \mathbb{E}_Q g_+$ and $\mathbb{E}_{(Z^- \sim \mu^{m_-})} \mathbb{E}_{Z^-} g_- = \mathbb{E}_\mu g_-$. Therefore we obtain

$$\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \acute{g} = \frac{1}{\rho + 1} \mathbb{E}_Q g_+ + \frac{\rho}{\rho + 1} \mathbb{E}_\mu g_- = \mathbb{E}_{Q \ominus_s \mu} g$$

establishing the second assertion. Finally, Jensen's inequality and Tonelli's theorem imply

$$\begin{split} \mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \dot{g}^2 &= \mathbb{E}_{\left((Z^+, Z^-) \sim Q^{m_+} \otimes \mu^{m_-}\right)} (\mathbb{E}_{(Z^+ \ominus_s Z^-)} g)^2 \\ &\leq \mathbb{E}_{\left((Z^+, Z^-) \sim Q^{m_+} \otimes \mu^{m_-}\right)} \mathbb{E}_{(Z^+ \ominus_s Z^-)} g^2 \\ &= \mathbb{E}_{Q \ominus_s \mu} g^2. \end{split}$$

The proof of Theorem 2.2 follows very closely that of the rate theorem for classification using Gaussian kernels [2, Theorem 2.8]. With that in mind we require a slight generalization of [2, Theorem 5.1]. It differs in that it does not require \mathcal{F} to be a set of functions on the domain of the measure space. The proof is essentially the same so it will not be repeated here.

Theorem 3.2. Let P be a probability measure on a set W. Let F be a convex subset of a vector space and let $L: \mathcal{F} \times W \to [0, \infty)$ be a convex and line-continuous loss function such that the functions $\{L(f,\cdot): f\in \mathcal{F}\}\$ from $W\to [0,\infty)$ are bounded, measurable, and separable with respect to $\|.\|_{\infty}$. Denote $L \odot f(\cdot) := L(f, \cdot)$ and let $T \in W^n$ be an n-sample. Let $f_{T,\mathcal{F}} \in \arg\min_{f \in \mathcal{F}} \mathbb{E}_T L \odot f$, $f_{P,\mathcal{F}} \in$ $\arg\min_{f\in\mathcal{F}}\mathbb{E}_{\vec{P}}L\odot f$ and define

$$\acute{\mathcal{G}} := \{L \odot f - L \odot f_{\acute{P},\mathcal{F}} : f \in \mathcal{F}\}.$$

and its modulus of continuity

$$\omega_n(\acute{\mathcal{G}}, \acute{\varepsilon}) \ := \ \mathbb{E}_{T \sim \acute{P}^n} \left(\sup_{\begin{subarray}{c} \acute{g} \in \acute{\mathcal{G}}, \\ \mathbb{E}_{\acute{P}} \acute{g}^2 < \acute{\varepsilon} \end{subarray}} |\mathbb{E}_{\acute{P}} \acute{g} - \mathbb{E}_{T} \acute{g}| \right).$$

Suppose that there are constants $c \geq 0$, $0 < \alpha \leq 1$, $\delta \geq 0$ and B > 0 with $\mathbb{E}_{p} \dot{g}^{2} \leq c (\mathbb{E}_{p} \dot{g})^{\alpha} + \delta$ and $\|\dot{g}\|_{\infty} \leq B$ for all $\dot{g} \in \mathcal{G}$. Let $n \geq 1$, x > 0 and $\varepsilon > 0$ with

$$\varepsilon \ge 10 \max \left\{ \omega_n(\mathcal{G}, c\varepsilon^{\alpha} + \delta), \sqrt{\frac{\delta x}{n}}, \left(\frac{4cx}{n}\right)^{\frac{1}{2-\alpha}}, \frac{Bx}{n} \right\}$$

Then we have

$$(\acute{P}^n)^* \Big(T \in W^n : \mathbb{E}_{ \Boldsymbol{P}} L \circledcirc f_{T, \mathcal{F}} < \mathbb{E}_{ \Boldsymbol{P}} L \circledcirc f_{\Boldsymbol{P}, \mathcal{F}} + \varepsilon \Big) \ \ge \ 1 - e^{-x} \,.$$

We are now in a position to prove the analogue of [2, Theorem 5.8] when independently the nm_+ -sample $T^+ \in X^{nm_+}$ is i.i.d. sampled from Q and the nm_- -sample $T^- \in X^{nm_-}$ is i.i.d. sampled from μ . Let us introduce some notation. Let $\mathcal{R}_{L,P}(f) := \mathbb{E}_P L \circ f$ denote the L-risk and let $f_{P,\mathcal{F}} \in \arg\min_{f \in \mathcal{F}} \mathcal{R}_{L,P}(f)$ denote a minimizer. For the $nm_+ + nm_-$ -sample $(T^+, T^-) \in X^{nm_+} \times X^{nm_-}$ let $\mathcal{R}_{L,T^+,T^-}(f) := \mathbb{E}_{(T^+ \ominus_s T^-)} L \circ f$ and let $f_{T^+,T^-,\mathcal{F}} \in \arg\min_{f \in \mathcal{F}} \mathcal{R}_{L,T^+,T^-}(f)$ denote an empirical minimizer.

Theorem 3.3. Let Q and μ be probability measures on a set X and let $P:=Q\ominus_s \mu$ with 0 < s < 1. Let \mathcal{F} be a convex subset of a vector space and let $L:\mathcal{F} \times X \times \{-1,1\} \to [0,\infty)$ be a convex and line-continuous loss function such that the functions $\{L(f,\cdot):f\in\mathcal{F}\}$ from $X\times \{-1,1\} \to [0,\infty)$ are bounded, measurable, and separable with respect to $\|.\|_{\infty}$. Denote $L\circ f(\cdot):=L(f,\cdot)$ and consider the class

$$\mathcal{G} := \{L \circ f - L \circ f_{P,\mathcal{F}} : f \in \mathcal{F}\}.$$

of functions on $X \times \{-1,1\}$ Suppose that there are constants $c \geq 0$, $0 < \alpha \leq 1$, $\delta \geq 0$ and B > 0 with $\mathbb{E}_P g^2 \leq c (\mathbb{E}_P g)^{\alpha} + \delta$ and $||g||_{\infty} \leq B$ for all $g \in \mathcal{G}$. Furthermore, assume that there are constants $a \geq 1$ and 0 with

$$\sup_{(T^+,T^-)\in X^{nm_+}\times X^{nm_-}}\log\mathcal{N}\big(B^{-1}\mathcal{G},\varepsilon,L_2(T^+,T^-)\big) \leq a\varepsilon^{-p}$$
(3.5)

for all $\varepsilon > 0$. Then there exists a constant $c_p > 0$ depending only on p such that for all $n \ge 1$, $m_+ \ge 1$, $m_- \ge 1$ and all x > 0 we have

$$(Q^{nm_+} \otimes \mu^{nm_-})^* \Big((T^+, T^-) : \mathcal{R}_{L,P}(f_{T^+,T^-,\mathcal{F}}) > \mathcal{R}_{L,P}(f_{P,\mathcal{F}}) + c_p \, \epsilon \Big) \le e^{-x} \,,$$

where

$$\begin{split} \epsilon \ := \ \varepsilon(n,a,B,c,\delta,x) := B^{\frac{2p}{4-2\alpha+\alpha p}} c^{\frac{2-p}{4-2\alpha+\alpha p}} \left(\frac{a}{n}\right)^{\frac{2}{4-2\alpha+\alpha p}} + B^{\frac{p}{2}} \delta^{\frac{2-p}{4}} \left(\frac{a}{n}\right)^{\frac{1}{2}} \\ + B \left(\frac{a}{n}\right)^{\frac{2}{2+p}} + \sqrt{\frac{\delta x}{n}} + \left(\frac{cx}{n}\right)^{\frac{1}{2-\alpha}} + \frac{Bx}{n} \,. \end{split}$$

Proof. We intend to apply Theorem 3.2 with $W = X^{m_+} \times X^{m_-}$, measure $P = X^{m_+} \times X^{m_-}$ $Q^{m_+} \otimes \mu^{m_-}$, and the loss function $L \otimes$ defined in (3.3). First observe that Lemma 3.1 implies that $\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})}L \odot f = \mathbb{E}_{Q \ominus_s \mu}L \circ f = \mathcal{R}_{L,P}(f)$ and $\mathbb{E}_T L \odot f = \mathcal{R}_{L,P}(f)$ $\mathbb{E}_{(T^+ \ominus_s T^-)} L \circ f = \mathcal{R}_{L,T^+,T^-}(f)$ so that we obtain the correct risk in the statement of the theorem and the correct empirical risk function to define $f_{T^+,T^-,\mathcal{F}}$. Next we need to translate the variance and supremum bound assumptions on $\mathcal G$ to variance and supremum bounds on $\hat{\mathcal{G}}$. To that end observe that for $f \in \mathcal{F}$ the corresponding $g \in \mathcal{G}$ is $L \circ f - L \circ f_{P,\mathcal{F}}$ and the corresponding $g \in \mathcal{G}$ is

Assume for the moment that g and g correspond to the same f and so are related in this way. Since $\mathbb{E}_{(Z^+\ominus_s Z^-)}$ is an averaging operation it follows that $\|g\|_{\infty} \leq$ B if $||g||_{\infty} \leq B$. Moreover, Lemma 3.1 implies that $\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \acute{g} = \mathbb{E}_P g$ and $\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \dot{g}^2 \leq \mathbb{E}_P g^2$ so that $\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \dot{g}^2 \leq c \left(\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \dot{g} \right)^{\alpha} + \delta$ if $\mathbb{E}_P g^2 \leq c \left(\mathbb{E}_{(Q^{m_+} \otimes \mu^{m_-})} \dot{g} \right)^{\alpha} + \delta$ $c(\mathbb{E}_P g)^{\alpha} + \delta$. Therefore we can translate variance bounds on \mathcal{G} into variance bounds of the same form on \mathcal{G} .

We may now apply Theorem 3.2. We need to bound the modulus $\omega_n(\mathcal{G},\varepsilon)$ in terms of the covering bound assumption. Although Jensen's inequality and Lemma 3.1 imply that

$$\omega_n(\acute{\mathcal{G}},\varepsilon) \ge \omega_n(\mathcal{G},\varepsilon)$$

this inequality goes the wrong way to be useful. We proceed instead by bounding the modulus of continuity in terms of the local Rademacher average (see [14])

$$\omega_n(\acute{\mathcal{G}}, \varepsilon) \leq 2Rad(\acute{\mathcal{G}}, n, \varepsilon)$$

and then utilizing [2, Proposition 5.4] to bound the Rademacher average in terms of covering numbers followed by comparing the covering numbers of \mathcal{G} in terms of the covering numbers of \mathcal{G} . Indeed, write $\acute{g}(Z^+,Z^-)=\mathbb{E}_{(Z^+\ominus_sZ^-)}g$ and consider an n-sample $\mathsf{T}=\left((Z_1^+,Z_1^-),...,(Z_n^+,Z_n^-)\right)$ on $X^{m_+}\times X^{m_-}$. Denote $T^+=(Z_1^+,...,Z_n^+)$ and $T^- = (Z_1^-, ..., Z_n^-)$. Then by Jensen's inequality we obtain

$$\begin{split} \| \dot{g} \|_{L_{2}(\mathsf{T})}^{2} &= \frac{1}{n} \sum_{j=1}^{n} | \dot{g}(Z_{j}^{+}, Z_{j}^{-}) |^{2} = \frac{1}{n} \sum_{j=1}^{n} | \mathbb{E}_{(Z^{+} \ominus_{s} Z^{-})} g |^{2} \leq \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{(Z^{+} \ominus_{s} Z^{-})} g^{2} \\ &= \mathbb{E}_{(T^{+} \ominus_{s} T^{-})} g^{2} = \frac{1}{\rho + 1} \| g \|_{L_{2}(T^{+})}^{2} + \frac{\rho}{\rho + 1} \| g \|_{L_{2}(T^{-})}^{2} \end{split}$$

and consequently

$$\|\dot{g}\|_{L_2(\mathsf{T})} \leq \sqrt{\frac{1}{\rho+1}} \|g\|_{L_2(T^+)} + \sqrt{\frac{\rho}{\rho+1}} \|g\|_{L_2(T^-)}.$$

Therefore by choosing a set in \mathcal{G} which determines an ϵ cover for $\|\cdot\|_{L_2(T^+)}^2$ and then for each component of the cover choosing a set in \mathcal{G} which determines an $\epsilon/\sqrt{\rho}$ cover for $\|\cdot\|_{L_2(T^-)}^2$ we obtain that

$$\mathcal{N}\big(\dot{\mathcal{G}}, \epsilon, L_2(\mathsf{T})\big) \leq \mathcal{N}\big(\mathcal{G}, \frac{1}{2}\sqrt{\rho+1}\epsilon, L_2(T^+)\big)\mathcal{N}\big(\mathcal{G}, \frac{1}{2}\sqrt{\frac{\rho+1}{\rho}}\epsilon, L_2(T^-)\big).$$

Consequently assumption (3.5) implies

$$\sup_{\mathsf{T}} \log \mathcal{N} \big(B^{-1} \mathcal{G}, \varepsilon, L_2(\mathsf{T}) \big) \leq 8a\varepsilon^{-p}.$$

Thus we can apply [2, Proposition 5.7] to bound the local Rademacher average $Rad(\mathcal{G}, n, \varepsilon)$ using 8a instead of a. The rest of the proof follows as in the proof of [2, Theorem 5.8] where we use the inequality $\varepsilon(n, 8a, B, c, \delta, x) \leq 8\varepsilon(n, a, B, c, \delta, x)$.

Proof of Theorem 2.2. The proof follows very closely that of the rate theorem for classification using Gaussian kernels [2, Theorem 2.8]. Let l be the hinge loss defined by $l(y,t) := \max\{0, 1-yt\}, y \in Y, t \in \mathbb{R}$. We select the loss function

$$L(f,x,y) = \lambda ||f||_H^2 + l(y,f(x))$$

for the no-offset case $\mathcal{F} = H$ and

$$L(f, b, x, y) = \lambda ||f||_{H}^{2} + l(y, f(x) + b)$$

for the offset case $\mathcal{F} = H \times \mathbb{R}$. Consequently for an $nm_+ + nm_-$ -sample $(T^+, T^-) \in X^{nm_+} \times X^{nm_-}$, an empirical minimizer $f_{T^+,T^-,\mathcal{F}} \in \arg\min_{f \in \mathcal{F}} \mathcal{R}_{L,T^+,T^-}(f)$ is a solution of equation (2.2) when $\mathcal{F} = H$ and equation (2.3) when $\mathcal{F} = H \times \mathbb{R}$.

A simple calculation shows that the density h has geometric ρ -exponent α if and only if $P:=Q\ominus_s\mu$ has geometric exponent α in the sense of [2]. Moreover [1, Proposition 2.9] shows that h has ρ -exponent q if and only if $P:=Q\ominus_s\mu$ has Tsybakov noise exponent q in the sense of [5]. Therefore if we recall that in the proof of Theorem 3.3 we observed that variance bounds on \mathcal{G} imply the same variance bounds on $\hat{\mathcal{G}}$, we conclude that the variance bounds of [2,Proposition 6.1 and Proposition 6.8] hold on $\hat{\mathcal{G}}$ with measure $Q^{m_+}\otimes\mu^{m_-}$. Since we have established Theorem 3.3 as an analogue of [2, Theorem 5.8] and the proof of [2, Lemma 7.2] uses only the function $\epsilon(\cdot)$, [2, Lemma 7.2] holds with $X^{m_+} \times X^{m_-}$ instead of the stated $X \times \{-1,1\}$. In the same way that [2, Theorem 2.8] follows from [2, Lemma 7.2] we obtain from this modification of [2, Lemma 7.2] that

$$(Q^{nm_+} \otimes \mu^{nm_-})^* \Big((T^+, T^-) : \mathcal{R}_P(f_{T^+, T^-, \lambda_n}) \le \mathcal{R}_P^* + Cx^2 n^{-\frac{\alpha}{2\alpha+1} + \varepsilon} \Big) \ge 1 - e^{-x}$$
 if $\alpha \le \frac{q+2}{2a}$ and

$$(Q^{nm_+} \otimes \mu^{nm_-})^* \left(\mathcal{R}_P(f_{T^+,T^-,\lambda_n}) \le \mathcal{R}_P^* + Cx^2 n^{-\frac{2\alpha(q+1)}{2\alpha(q+2)+3q+4}+\varepsilon} \right) \ge 1 - e^{-x}$$

otherwise. If $\alpha = \infty$ the latter concentration inequality holds if $\sigma_n = \sigma$ is a constant with $\sigma > 2\sqrt{d}$. Furthermore, all results hold for the L1-SVM with offset if q > 0. Theorem 2.2 then follows directly from Theorem 3.1 and the inequality $\frac{q}{1+q} \leq 1$.

References

- [1] I. Steinwart, D. Hush and C. Scovel, A classification framework for anomaly detection, Journal of Machine Learning Research. 6 (2005), 211-232.
- [2] I. Steinwart and C. Scovel, Fast rates for support vector machines using Gaussian kernels, Annals of Statistics, submitted, 2004.
- [3] I. Steinwart and C. Scovel, Fast rates for support vector machines, to appear Proceedings of the Conference on Learning Theory (COLT-2005).
- [4] W. Polonik, Measuring mass concentrations and estimating density contour clusters an excess mass aproach, Ann. Stat. 23(1995), 855-881.
- A.B. Tsybakov, On nonparametric estimation of density level sets, Ann. Stat. **25**(1997), 948–969.
- [6] S. Ben-David and M. Lindenbaum, Learning distributions by their density levels: a paradigm for learning without a teacher, J. Comput. System Sci. 55(1997), 171-182.
- [7] I. Steinwart, D. Hush and C. Scovel, Density level detection is classification, Neural Information Processing Systems 17(2005), 1337–1344.
- J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
- [9] A. Cuevas and M. Febrero and R. Fraiman, Cluster analysis: a further approach based on density estimation, Computat. Statist. Data Anal. 36(2001), 441-459.
- [10] D.W. Müller and G. Sawitzki, Excess mass estimates and tests for multimodality, J. Amer. Statist. Assoc. 86(1991), 738-746.
- [11] G. Sawitzki, The Excess Mass Approach and the Analysis of Multi-Modality, In From data to knowledge: Theoretical and practical aspects of classification, data analysis and knowledge organization, 203-211, W. Gaul and D. Pfeifer, Editors, Proc. 18th Annual Conference of the GfKl, Springer, 1996.
- [12] J.A. Hartigan, Estimation of a convex density contour in 2 dimensions, J. Amer. Statist. Assoc. 82(1987), 267-270.
- [13] L. Devroye and L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, New York, 1996.
- [14] A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes, Springer, New York, 1997.